Pd-Catalyzed Coupling Reaction of Acetylenes, Iodotrimethylsilane, and Organozinc Reagents for the Stereoselective Synthesis of Vinylsilanes

Naoto Chatani, Nobuyoshi Amishiro, Takaya Morii, Toshiaki Yamashita,[†] and Shinji Murai*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Received October 21, 1994[®]

The reaction of terminal acetylenes with Me₃SiI (1) and organozinc reagents in the presence of $Pd(PPh_3)_4$ results in addition of the trimethylsilyl group of 1 and an alkyl group of the organozinc reagent to the acetylenes. In all cases the trimethylsilyl group adds to the terminal carbon of the acetylenes. Both aromatic and aliphatic terminal acetylenes undergo the coupling reaction with high regio- and stereoselectivities. The yield and stereoselectivity are relatively sensitive to the nature of the organozinc reagent used. The reaction of phenylacetylene (2) using Bu₂Zn gives the corresponding coupling product in high yield with high stereoselectivity (>98%). In contrast, the use of BuZnI results in 92% stereoselectivity. The stereoselectivity for the reaction using (Me₃-SiCH₂)₂Zn is lower than those for Me₂Zn, Et₂Zn, and Bu₂Zn. For organozinc reagents, alkylzinc works well while phenyl-, ethynyl-, and allylzinc do not. The reaction using Me₃SiGCl, Me₃SiBr, Me₃SiSPh, Me₃SiSePh, and Me₃SiOTf in place of 1 does not proceed. The reaction with Me₃SiMe₂-SiI and Me₃SiMe₂SiI in place of 1 gives the corresponding vinyldisilane and -trisilane, respectively.

Introduction

The stereoselective synthesis of vinylsilanes is important because vinylsilanes have been recognized as versatile building blocks in organic synthesis.¹ A wide variety of starting materials such as ketones, vinyl halides, and olefins have been used for the preparation of vinylsilanes. Acetylenes are also a substrate of choice. One of the more straightforward routes to stereodefined vinylsilanes is transition-metal-catalyzed hydrosilylation of acetylenes, and many papers dealing with this reaction have appeared so far.² Hydrometalation³ or carbometalation⁴ of silylacetylenes has been extensively studied in recent years for the stereoselective preparation of vinylsilanes. Stoichiometric silylmetalation of acetylenes with Si-M (M = Li, Mg, Al, Cu, and Zn) species followed by treatment with electrophiles is also one of the attractive methods.⁵ Despite the wide availability of synthetic methods of vinylsilanes as described above, there still exists a need for new selective and convenient procedures.

We have been studying the development of catalytic synthesis of vinylsilanes on the basis of new methodology, which involves silylmetalation⁶ of an olefin or an acetylene with Si-M (M = transition metal) as the key catalytic species. Along this line, we have reported new synthetic methods of vinylsilanes by the Fe,^{7a} Ru,^{7b} Os,^{7a} Co,^{7c} and Rh^{7d}-catalyzed dehydrogenative silylation of olefins with hydrosilanes as well as the Pd- and Nicatalyzed addition reactions of Me₃SiCN to acetylenes.⁸

Very recently, we reported a new Pd-catalyzed coupling reaction of acetylenes with iodotrimethylsilane (Me₃SiI, 1) and organostannanes leading to silyl-substituted conjugated enynes (eq 1).⁹ This new catalytic reaction involves oxidative addition of the Si–I bond in 1 to Pd-(0) leading to a silylpalladium(II) species (I) and silylpal-

⁺ On leave from Miyakonojo National College of Technology.

^{*} Abstract published in Advance ACS Abstracts, March 1, 1995.

⁽¹⁾ For reviews on vinylsilanes, see: Chan, T. H.; Fleming, I. Synthesis 1979, 761. Magnus, P. Aldrichim. Acta 1980, 13, 43. Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London, 1981. Magnus, P. D.; Sarkar, T.; Djuric, S. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Eds.; Pergamon Press: Oxford, 1982; Vol. 7, pp 515-659. Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983. Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57.

<sup>J.; Smithers, R. Org. Heart. 1989, 37, 57.
(2) For reviews on hydrosilylation, see: Lukevics, E.; Belyakova, Z.
(2) For reviews on hydrosilylation, see: Lukevics, E.; Belyakova, Z.
(3) For reviews on hydrosilylation, see: Lukevics, E.; Belyakova, Z.
(4) Toronkov, M. G. J. Organomet. Chem. Libr.
1977, 5, 1. Speier, L. J. Adv. Organomet. Chem. 1979, 17, 407. Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, England, 1989; Chapter 25, pp 1479-1526. Hiyama, T.; Kusumoto, T. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, pp 763-792.
(3) H-Al: Eisch, J. J.; Foxton, M. W. J. Org. Chem. 1971, 36, 3520.
Eisch, J. J.; Rhee, S. G. J. Am. Chem. Soc. 1975, 97, 4673. Eisch, J. J.; Damasevitz, G. A. J. Org. Chem. 1976, 41, 2214. Uchida, K.; Utimoto.</sup>

⁽³⁾ H-Al: Eisch, J. J.; Foxton, M. W. J. Org. Chem. 1971, 36, 3520.
Eisch, J. J.; Rhee, S. G. J. Am. Chem. Soc. 1975, 97, 4673. Eisch, J. J.; Damasevitz, G. A. J. Org. Chem. 1976, 41, 2214. Uchida, K.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1976, 41, 2215. Zweifel, G.; Lewis, W. J. Org. Chem. 1978, 43, 2739. Eisch, J. J.; Manfre, R. J.; Komar, D. A. J. Organomet. Chem. 1978, 159, C13. Miller, R. B.; McGarvey, G. J. Org. Chem. 1978, 43, 4424. Snider, B. B.; Karras, M. J. Organomet. Chem. 1977, 179, C37. Zweifel, G.; On, H. P. Synthesis 1980, 803. On, H. P.; Lewis, W.; Zweifel, G. Synthesis 1981, 999. Zweifel, G.; Murray, R. E.; On, H. P. J. Org. Chem. 1978, 146, 1292. Tomioka, H.; Suzuki, T.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 3387. Miller, J. A.; Zweifel, G. J. Am. Chem. Soc. 1983, 105, 1383. Negishi, E.-L; Takahashi, T. J. Am. Chem. Soc. 1986, 108, 3402. H-B: Miller, R. B.; Reichenbach, T. Tetrahedron Lett. 1974, 543. Achmatowicz, B.; Raubo, P.; Wicha, J. J. Org. Chem. 1992, 57, 6593. H-Mg: Djadchenko, M. A.; Pivnitsky, K. K.; Spang, J.; Schick, H. J. Organomet. Chem. 1991, 401, 1.

⁽⁴⁾ C-Mg: Snider, B. B.; Karras, M.; Conn, R. S. E. J. Am. Chem. Soc. 1978, 100, 4624. Fujikura, S.; Inoue, M.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1984, 25, 1999. Conn, R. S. E.; Karras, M.; Snider, B. B. Isr. J. Chem. 1994, 24, 108. C-Ti: Eisch, J. J.; Manfre, R. J.; Komar, D. A. J. Organomet. Chem. 1978, 159, C13. C-Al: Kusumoto, T.; Nishide, K.; Hiyama, T. Chem. Lett. 1985, 1409. Shiragami, H.; Kawamoto, T.; Imi, K.; Matsubara, S.; Utimoto, K.; Nozaki, H. Tetrahedron 1988, 44, 4009. Kusumoto, T.; Nishide, K.; Hiyama, T. Bull Chem. Soc. Jpn. 1990, 63, 1947. C-Al, C-Ti: Snider, B. B.; Karras, M. J. Organomet. Chem. 1979, 179, C37. Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1984, 49, 725. C-Ti: Harms, A. E.; Stille, J. R. Tetrahedron Lett. 1992, 33, 6565. C-Zn: Negishi, E.-I.; Miller, J. A. J. Am. Chem. Soc. 1983, 105, 6761. Van der Louw, J.; Van der Baan, J. L.; Bickelhaupt, F.; Klumpp, G. W. Tetrahedron Lett. 1987, 28, 2889.

ladation of an acetylene with the Si-Pd species I followed by coupling with organostannanes (Scheme 1). This catalytic cycle seems to be reasonable in the light of related precedents in the literature. In 1988, Tanaka reported a stoichiometric reaction of bromo- and iodotrimethylsilane with Pt(PEt₃)₃ leading to silylplatinum(II) complexes, $Me_3SiPtX(PEt_3)_2$ (X = Br or I) as the first example of the oxidative addition of a silicon-halogen bond to a transition metal complex.¹⁰ Although silylpalladation has not been a well-established process for stoichiometric organometallic reactions, a number of catalytic reactions are believed to involve silylpalladation as the key steps.⁶ The examples of Pd-catalyzed reactions of acetylenes are bis-silvlation with disilanes (Si-Si),¹¹ silylstannation with silylstannanes (Si-Sn),¹² silylcyanation with a silvlcyanide (Si-CN)⁸ and ring opening addition of a silacyclobutane.¹³ Recently, Tanaka reported an explicit example of the insertion of an acetylene into a Si-Pt bond, i.e., the reaction of an acetylene with $Me_3SiPtI(PEt_3)_2$ affording a (β -silvlvinvl)platinum complex (similar to II in Scheme 1).¹⁴ It was also reported

(9) Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 114, 7779.

that the reaction of bis(silyl)palladium complexes, $(R_3-Si)_2PdL_2,$ with acetylenes gave bis(silyl)ethenes as the result of silylpalladation. 15

Though useful and interesting, the reaction of eq 1 suffers from limitations. The most significant one is that alkylstannane reagents cannot participate in the reaction. Alkyl groups could not be incorporated into the acetylenes by this route. To make the coupling reaction more useful and general, we have examined the possibility of using other organometallic reagents (R-M; R = alkynyl, alkyl, vinyl, Ph; M = Al, B, Hg, Si, Zn, Zr) which are known to act as coupling reagents in Pd-catalyzed reactions of vinyl halides.¹⁶ Among these examined, dialkylzinc reagents were found to participate cleanly in the coupling reaction. Described below is a new route to stereodefined vinylsilanes through the Pd-catalyzed coupling reaction of acetylenes, iodotrimethylsilane (Me₃SiI, 1), and organozinc reagents (eq 2).

$$R \longrightarrow + Me_{3}Sil + R'_{2}Zn \longrightarrow R' H (2)$$

Results and Discussion

The Pd-catalyzed coupling reaction (eq 2) can be applied to a variety of acetylenes and organozinc reagents. The results are summarized in Table 1. Both aromatic and aliphatic terminal acetylenes undergo the coupling reaction. Most importantly, the coupling reaction proceeds regio- and stereoselectively. In all cases the trimethylsilyl group added to the terminal carbon of the acetylenes, and the alkyl group from dialkyl zinc reagents was introduced to the internal carbon.

When the reaction of phenylacetylene (2) with 1 (2 equiv) and Me₂Zn (1 equiv) in the presence of 5 mol % of Pd(PPh₃)₄ was run in dioxane at 25 °C for 8 h, (*E*)-2-phenyl-1-(trimethylsilyl)prop-1-ene (**3a**) was obtained

(13) Sakurai, H.; Imai, T. *Chem. Lett.* **1975**, 891. Takeyama, Y.; Nozaki, K.; Matsumoto, K.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **1991**, 64, 1461.

(14) Yamashita, H.; Tanaka, M.; Goto, M. Organometallics **1993**, *12*, 988.

(15) Murakami, M.; Yoshida, T.; Ito, Y. Organometallics **1994**, *13*, 2900. Ozawa, F.; Sugawara, M.; Hayashi, T. Organometallics **1994**, *13*, 3237.

(16) Keck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: London, 1985.

⁽⁵⁾ Si-Cu: Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc., Perkin Trans 1 1981, 2527. Capella, L.; Degl'Innocenti, A.; Reginato, G.; Ricci, A.; Taddei, M. J. Org. Chem. 1989, 54, 1473. Millar, J. G. Tetrahedron Lett. 1989, 30, 4913. Casarini, A.; Jousseaume, B.; Lazzari, D.; Porciatti, E.; Reginato, G.; Ricci, A.; Seconi, G. Synlett 1992, 981. Fleming, I.; de Marigorta, E. M. Tetrahedrom Lett. 1993, 34, 1201. Capella, L.; Capperucci, A.; Curotto, G.; Lazzari, D.; Dembech, P.; Reginato, G.; Ricci, A. Tetrahedron Lett. 1993, 34, 3311. Si-Ti: Tamao, K.; Akita, M.; Kanatani, R.; Ishida, N.; Kumada, M. J. Organomet. Chem. 1982, 226, C9. Si-Al: Roesch, L.; Altnav, G.; Jasz, G. Chem.-Ztg. 1982, 106, 441. Si-Mg, Si-Al, Si-Zn: Hiyama, T.; Sato, M.; Kanemoto, S.; Morizawa, Y.; Oshima, K.; Nozaki, H. J. Am. Chem. Soc. 1983, 105, 4491. Okuda, Y.; Morizawa, Y.; Oshima, K. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press Ltd: London, 1991; Vol 2, pp 101-141.

⁽⁶⁾ For a recent review on catalytic reactions involving silylmetallation as a key step, see: Murai, S.; Chatani, N. J. Synth. Org. Chem. Jpn. 1993, 51, 421; Chem. Abstr. 1993, 119, 95563y.
(7) (a) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Orga-

^{(7) (}a) Kakiuchi, F.; Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45. (b) Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. 1980, 19, 928.
Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1986, 51, 3890. (c) Takeshita, K.; Seki, Y.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Chem. Soc., Chem. Commun. 1983, 1193. Takeshita, K.; Seki, Y.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Chem. Soc., Chem. Commun. 1983, 1193. Takeshita, K.; Seki, Y.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Chem. 1987, 52, 4864. (d) Kakiuchi, F.; Nogami, K.; Seki, Y.; Chatani, N.; Murai, S. Organometallics 1993, 12, 4748.

 ⁽⁸⁾ Chatani, N.; Hanafusa, T. J. Chem. Soc., Chem. Commun. 1985,
 838. Chatani, N.; Takeyasu, T.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1988, 53, 3539.

^{(11) (}a) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc. 1975, 97, 931. (b) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1975, 86, C27. (c) Tamao, K.; Hayashi, T.; Kumada, M. J. Organomet. Chem. 1976, 114, C19. (d) Watanabe, H.; Kobayashi, M.; Higuchi, K.; Nagai, Y. J. Organomet. Chem. 1980, 186, 51. (e) Matsumoto, H.; Matsubara, I.; Kato, T.; Shono, K.; Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organomet. Chem. 1980, 186, 51. (e) Matsumoto, H.; Matsubara, I.; Kato, T.; Shono, K.; Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organomet. Chem. 1981, 216, 148. (g) Carlson, C. W.; West, R. Organometallics 1983, 2, 1801. (h) Kusumoto, T.; Hiyama, T. Tetrahedron Lett. 1987, 28, 1807. (i) Kusumoto, T.; Hiyama, T. Bull. Chem. Soc. Jpn. 1990, 63, 3103. (j) Ito, Y.; Suginome, M.; Murakami, M. J. Org. Chem. 1991, 56, 1948. (k) Yamashita, H.; Catellani, M.; Tanaka, M. Chem. Lett. 1992, 1547. (m) Finckh, W.; Tang, B.-Z.; Lough, A.; Manners, I. Organometallics 1992, 11, 2904. (n) Murakami, M.; Suginome, M.; Fujimoto, K.; Ito, Y. Angew. Chem., Int. Ed. Engl. 1993, 32, 1473. (o) Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Anderson, P. G.; Ito, Y. J. Am. Chem. Soc. 1993, 115, 6487.

⁽¹²⁾ Mitchell, T. N.; Killing, H.; Dicke, R.; Wicknkamp, R. J. Chem. Soc., Chem. Commun. 1985, 354. Chenard, B. L.; Laganis, E. D.; Davidson, F.; RajanBabu, T. V. J. Org. Chem. 1985, 50, 3667. Chenard, B. L.; Van Zyl, C. M. J. Org. Chem. 1986, 51, 3561. Chenard, B. L.; Van Zyl, C. M.; Sanderson, D. R. Tetrahedron Lett. 1986, 27, 2801. Mitchell, T. M.; Wickenkamp, R.; Amamria, A.; Dicke, R.; Schneider, U. J. Org. Chem. 1987, 52, 4868. Murakami, M.; Morita, Y.; Ito, Y. J. Chem. Soc., Chem. Commun. 1990, 428. Mori, M.; Watanbe, N.; Kaneta, N.; Shibasaki, M. Chem. Lett. 1991, 1615. Murakami, M.; Amii, H.; Takizawa, N.; Ito, Y. Organometallics 1993, 12, 4223.
(13) Sakurai, H.; Imai, T. Chem. Lett. 1975, 891. Takeyama, Y.;

entry	acetylene	organozinc	product	time/h	yield/% ^b	
1	Ph-===	Me ₂ Zn	Ph SiMe ₃	8	61 (>98)	
	2		Me 3a			
2 °	2	Me ₂ Zn	3a	2	77 (>98)	
3	2	Et ₂ Zn	Ph SiMe ₃	1	90 (>98)	
4	2	BuZni ^d	3b Ph SiMe ₃ Bu	1	41(92)	
5	2	Bu ₂ Zn ^e	3c	1	73 (>98)	
6	2	Bu ₃ ZnLi [†]	Ph-SiMe3	1	50	
7	2	(Me ₃ SiCH ₂) ₂ Zn ^e	Ph. Ann	1	66 (92)	
			Me ₃ SiCH ₂ 3d			
8	C ₆ H ₁₁	Me₂Zn	C ₆ H ₁₁ SiMe ₃ Me	11	48 (>98)	
٥¢	4	No 70	58	<u>^</u>	E7 (> 08)	
9	4	Me2Zn	5a	2	27 (>98)	
10	4	Et₂Zn	Et 5b	1	68 (>98)	
11	4	Bu ₂ Zn ^e	C ₆ H ₁₁ SiMe ₃ Bu	1	73 (>98)	
12	4	(Me₃SiCH₂)₂Zn ^e	C ₆ H ₁₁ SiMe ₃ Me ₃ SiCH ₂	1	64 (90)	
13		Et ₂ Zn	PCICeHes A	1	89 (>98)	
	6		Et	·		
14	<i>p</i> -MeOC ₆ H₄ — =	Et ₂ Zn	P-MeOC ₆ H ₄ SiMe ₃	1	71(62)	
	8		Et 9b			
15	<i>m</i> ∙MeOC ₆ H₄ ==	Et ₂ Zn	m-MeOC ₆ H ₄ SiMe ₃	1	98(93)	
	10		Ét 11b			
16	o-BrC ₆ H ₄	Et ₂ Zn	o-BrC ₆ H ₄ SiMe ₃ Et	1	80 (>98)	
	12					
17	^I BuMe ₂ SiO	Et ₂ Zn	SiMe ₃	1	60 (>98)	
	14		15b			

Table 1.	Pd-Catalyzed Reaction	of Acetylenes wit	h Me ₃ SiI and	l Organozinc Reagents ^a
	•	•	-	<u> </u>

Table 1 (Continued)

^a Reaction conditions: acetylene (2.5 mmol), Me₃Sil (5 mmol), organozinc reagent (2.5 mmol), Pd(PPh₃)₄ (0.05 mmol), dioxane (5 mL).

at 25 °C. ^b Yields are based on acetylene used. Stereoselectivity is in parentheses. ^c At 40 °C. ^d Prepared from Znl₂ and RLi (1 equiv). ^e Prepared from Znl₂ and RLi (2 equiv). See text and experimental section. ^r Prepared from Znl₂ and RLi (3 equiv). ^g Et₂Zn (1.25 mmol) was used.

stereoselectively in 61% yield after column chromatography (entry 1). A higher temperature (40 °C) shortened the reaction time and improved the yield to 77% (entry 2). In contrast, the reaction of **2** with **1** and Et_2Zn was complete within 1 h even at 25 °C, and (E)-2-phenyl-1-(trimethylsilyl)but-1-ene (3b) was obtained in 90% yield with virtually complete regio- and stereoselectivities (entry 3). The choice of solvent was crucial to the success of the reaction. Toluene, THF, and CH₂Cl₂ were ineffective, and using Et_2O as solvent gave $\mathbf{3b}$ in only 14%yield (>98% stereoselectivity). 1,4-Dioxane was the solvent of choice. The observed yields and stereoselectivities were sensitive to the nature of the zinc reagent used. The reaction with BuZnI, generated in situ by the treatment of ZnI_2 with 1 equiv of BuLi followed by filtration of LiI formed,¹⁷ gave 2-phenyl-1-(trimethylsilyl)hex-1-ene (3c) in 41% yield with 92% stereoselectivity (entry 4). The use of Bu_2Zn , generated in situ from ZnI_2 and 2 equiv of BuLi followed by filtration of LiI, led to an increased yield (73%) and high stereoselectivity (>98%) (entry 5). However, the reaction of 2 with 1 and Bu_3ZnLi , obtained in situ from ZnI_2 and 3 equiv of BuLi followed by filtration of LiI, did not undergo the coupling reaction, but produced 1-(trimethylsilyl)phenylacetylene as the sole product (entry 6). The stereoselectivity in the reaction with (Me₃SiCH₂)₂Zn, prepared similarly from ZnI₂ and 2 equiv of Me₃SiCH₂Li, was slightly low. When the reaction of **2** with (Me₃SiCH₂)₂Zn was run at 25 °C, stereoselectivity was decreased to 92% (66% yield) (entry 7). The reaction did not take place with other zinc reagents such as (CH₂=CHCH₂)₂Zn, Ph₂Zn, and (PhC=C)₂Zn, nor did the reaction proceed when **1** was replaced with other silicon reagents such as Me₃SiOL, Me₃SiBr, Me₃SiSPh, Me₃SiSPh, Me₃SiOAc, Me₃SiOC(O)OEt, Me₃-SiOC(O)SPh, and Me₃SiOTf.

The coupling reaction of 1-octyne (4), 1, and organozinc reagents was also highly regio- and stereoselective (entries 8–12). Whether both of the ethyl groups or one of the ethyl groups in Et₂Zn is utilized for the coupling reaction was examined by varying the ratio of the reactants. The reaction where the ratio of $4/1/\text{Et}_2\text{Zn} =$ 2.5 mmol/5 mmol/2.5 mmol resulted in 68% yield and >98% stereoselectivity (entry 10); $4/1/\text{Et}_2\text{Zn} =$ 2.5/5/1.25, 84% yield and 91% selectivity; $4/1/\text{Et}_2\text{Zn} =$ 2.5/3.5/1.25, 76% yield and 93% selectivity. These results show that both of ethyl groups in Et₂Zn are utilized in the coupling reaction. Thus, the first transfer of the ethyl group from Et₂Zn gave **5b** and EtZnI, and from the latter again the

⁽¹⁷⁾ For successful coupling reaction, it was necessary to separate the organozinc reagent from LiI that accompanied its formation. Without the filtration, no reaction took place. See Experimental Section.

Table 2. Pd-Catalyzed Coupling Reaction of Phenylacetylene (2) with Iodosilanes and Organozinc Reagents^a

entry	iodosilane	organozinc	product	time/h	yield/% ^b
1	Me ₃ SiSiMe ₂ I	Me₂Zn	Ph SiMe ₂ SiMe ₃ Me	4	73 (>98)
2 ¢		5t.7n	26a Ph	0.5	64 (>98)
2		E12211	Et 26b	2.9	04 (298)
3		(Me₃SiCH₂)₂Zn ^d	Ph SiMe ₂ SiMe ₃	4	90 (82)
			Me ₃ SiCH ₂ 26d		
4	Me ₃ SiSiMe ₂ SiMe ₂ I	Et ₂ Zn	Ph SiMe ₂ SiMe ₂ SiMe ₂ SiMe ₃	2	53 (88)
			27b		

^a Reaction conditions: phenylacetylene (2.5 mmol), iodosilane (5 mmol), organozinc reagent (2.5 mmol), Pd(PPh₃)₄ (0.05 mmol), dioxane (5 mL), at 40 °C. ^b Yields are based on acetylene used. Stereoselectivity is in parentheses. ^c At 25 °C. ^d Prepared from Znl₂ and RLi (2 equiv). See experimental section. ^e Et₂Zn (1.25 mmol) was used.

ethyl group was transferred leading to **5b** and ZnI₂. The lower stereoselectivity of the second transfer than the first one was suggested by the lower selectivities of 91 and 93% for runs using a half amount (1.25 mmol) of Et₂-Zn. The similar decrease in selectivity was noted in the reaction of **2** (entry 5 vs 4).

Functional groups such as siloxy, chloro, bromo, and even methoxy group that are known to react with 1^{18} remained intact under the reaction conditions (entries 13-19). A decrease in stereoselectivity was observed in the case of (p-methoxyphenyl)acetylene (8) but not in the case for (m-methoxyphenyl) acetylene (10) (entries 14 and 15), suggesting Z/E isomerization in a vinylpalladium intermediate.¹⁹ The reaction of 4-(2-bromophenyl)butyne (12) afforded the corresponding product 13b without cleavage of an aromatic-bromine bond, although Pdcatalyzed coupling of halobenzenes with organozinc reagents are known (entry 16).20 The reaction of (4acetyl- and (4-cyanophenyl)acetylene gave a complex mixture along with the expected product. The reaction of a conjugated enyne 20 with 1 and Et_2Zn gave 21b in a moderate yield and with low stereoselectivity (entry 22). The reaction of (trimethylsilyl)acetylene (24) with Et₂-Zn under the standard conditions gave the coupling product 25b only in 4% yield. The yield was improved to some extent (27%) when the mount of Et₂Zn used was out in half (entry 24).²¹ Coupling reaction of internal acetylenes such as diphenylacetylene and 1-phenylpropyne did not take place.

We thought it would be interesting to examine whether a Si-I bond or a Si-Si bond is cleaved in the reaction using iododisilane (Me₃SiSiMe₂I) in place of 1, because Pd-catalyzed bis-silylation of acetylenes with halodisilanes to give bis(silyl)ethenes is well known.¹¹ The results are summarized in Table 2. The reaction of 2 with Me₃SiSiMe₂I and Me₂Zn in the presence of Pd- $(PPh_3)_4$ in dioxane at 40 °C gave (E)-1-[dimethyl(trimethylsilyl)silyl]-2-phenylprop-1-ene (26a) without the cleavage of the Si-Si bond (entry 1). The result is in accordance with the observation that Me₃SiSiMe₂I undergoes oxidative addition to $Pt(PEt_3)_3$ selectively at the Si-I bond.²² Reaction in the presence of Et₂Zn and (Me₃-SiCH₂)₂Zn gave the corresponding vinyldisilanes (entries 2 and 3) as well. The present reaction was also extended to the coupling reaction with iodotrisilane (Me₃SiMe₂-SiMe₂SiI) to give the corresponding vinyltrisilane 27b (entry 4). The data illustrated in Table 2 indicate that the method described herein has considerable promise as a synthetic tool for new silicon-containing materials, since the resulting reaction products contain Si-Si bonds.11j,k

Concluding Remarks

We have studied the Pd-catalyzed coupling reaction of acetylenes, Me₃SiI, and organozinc reagents on the basis of the working hypothesis that the reaction proceeds via a mechanism closely related to that shown in Scheme 1. However, the mechanism of the present reaction is not fully understood. One can consider an alternative that the reaction proceeds via carbozincation²³ of acetylenes with R₂Zn followed by quenching with Me₃SiI. This possibility can be excluded for the following reasons. If the reaction involves carbozincation, Me₃SiCl, Me₃SiBr,

⁽¹⁸⁾ For reviews on Me₃SiI, see: Schmidt, V. A. H. Chem. Zeit. **1980**, 104, 253. Olah, G. A.; Narang, S. C. Tetrahedron **1982**, 38, 2225. Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983; pp 21-39. Olah, G. A.; Prakash, G. K. S. In Advances in Silicon Chemistry; Larson, G. L., Ed.; JAI Press Inc.: Greenwich, 1991; Vol 1, pp 2-64.

⁽¹⁹⁾ A similar decrease in stereoselectivity was encountered in the Pd-catalyzed reaction of (o- and (p-methoxyphenyl)acetylenes with Meg-SiCN or MegGeCN. This would be due to the isomerization of vinylpalladium complex (similar to II in Scheme 1) via a zwitterionic carbene complex. The electron-donating methoxy group stabilizes the zwitterion by the mesomeric effect. For a discussion on the isomerization, see: Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Organomet. Chem. 1994, 473, 335.

⁽²⁰⁾ Isobutyl, isobutenyl, benzyl, phenyl, and phenylethynyl substituents can be introduced into an aromatic ring by Pd-catalyzed halobenzenes with organozinc reagents. Hamon, D. P. G.; Massy-Westropp, R. A.; Newton, J. L. *Tetrahedron Lett.* **1993**, *34*, 5333.

⁽²¹⁾ Et_2Zn may react with 1 to some extent.

⁽²²⁾ Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. 1990, 1447.

⁽²³⁾ For a paper on Cp₂ZrI₂-promoted ethylzincation of acetylenes, see: Negishi, E.; Van Horn, D. E.; Yoshida, T.; Rand, C. L. Organometallics **1983**, 2, 563.

or Me₃SiOTf should be usable in place of 1 in the present reaction. This is not the case. In addition, treatment of **2** with Et_2Zn (2 equiv) in the presence of $Pd(PPh_3)_4$ in dioxane at 25 °C for 1 h did not give, after hydrolysis, 2-phenyl-1-butene. Whatever the mechanistic details, this new catalytic process provides a new synthetic method of vinylsilanes from an acetylene, Me₃SiI, and an organozinc reagent. The Pd-catalyzed coupling reaction is applicable to both aromatic and aliphatic acetylenes. Regioselectivity is complete; a silyl group adds to the terminal carbon of an acetylene. Stereoselectivity is high; a silyl group and an alkyl group add to an acetylene in the syn manner. The alkylative coupling with $R_2 Zn^{24}$ may serve as the complimentary method for ethynylative coupling where $RC \equiv CSnR'_3$ is involved.⁹ The observed wide functional group compatibility enhances the utility of the present reaction.

Experimental Section

General Comments. ¹H NMR and ¹³C NMR were recorded in CDCl₃ with tetramethylsilane as an internal standard. Elemental analyses were performed by Elemental Analyses Section of Osaka University. Me₃SiI (1) was purchased from Aldrich Chemical Co. and used without further purification. Dioxane was distilled from CaH₂. Et₂Zn was commercially available as 25 w/v % solution in hexane from Wako Chemical Co. or 1.0 M solution in hexane from Aldrich Chemical Co. Me₂Zn was supplied as 2.0 M solution in hexane from Nippon Alkyl Aluminum Co. Acetylenes 6, 8, 10, and 18 were prepared according to the method of Corey.²⁵ 4-(1-Bromophenyl)butyne (12) was prepared by the reaction of 1-bromobenzyl bromide with propargyl magnesium bromide.²⁶ A conjugated enyne 20 was prepared according to the known method.²⁷ Me₃-SiMe₂SiI²⁸ and Me₃SiMe₂SiMe₂SiI²⁹ were prepared by reported methods. Vinylsilanes 3a-c are known compounds and have already been fully characterized.³⁰

General Procedure for the Coupling Reaction with Me_2Zn and Et_2Zn . In a 10-mL reaction flask were placed $Pd(PPh_3)_4$ (0.05 mmol, 58 mg), dioxane (5 mL), phenylacetylene (2) (2.5 mmol, 255 mg), and Et_2Zn (25 w/v % in hexane, 2.5 mmol, 1.2 mL). On addition of iodotrimethylsilane (Me_3SiI , 1) (5 mmol, 0.71 mL) to the solution, a slightly exothermic reaction was observed. The mixture was allowed to react at 25 °C with stirring for 1 h under N₂. The reaction mixture was diluted with moist hexane (50 mL) to decompose excess Et_2Zn . Evaporation of the solvent in vacuo gave a brown oil, which was purified by column chromatography (silica gel, hexane) to give (E)-2-phenyl-1-(trimethylsilyl)but-1-ene (**3b**) (460 mg, 90%) as a colorless oil. An analytical sample was obtained by bulb-to-bulb distillation.

General Procedure for the Coupling Reaction Using Bu₂Zn. A 100-mL three-necked round bottomed flask equipped with a dropping funnel was flame-dried in a stream of N₂. In the flask was placed ZnI₂ (15 mmol, 4.78 g), which was dried over P_2O_5 , and the flask was again flame-dried. Dioxane (10 mL) was added to the flask in one portion. After cooling to 0 °C with an ice bath, 1.6 M BuLi in hexane (30 mmol, 19 mL) was added dropwise over 30 min. A white precipitate was immediately formed. After stirring at 0 °C for 1 h, the mixture was warmed to 25 °C where it was kept for 2 h. The precipitates were filtered through a filter funnel with a glass frit and washed with 5 mL of dioxane twice. The solution was

diluted with dioxane to make the solution about 0.6 M in dioxane (a total volume of 25 mL). The solution was used for the coupling reaction without titration.

In a 10-mL reaction flask were placed Pd(PPh₃)₄ (0.05 mmol, 58 mg), dioxane (1 mL), phenylacetylene (2) (2.5 mmol, 255 mg), Bu₂Zn in dioxane (5 mL), and iodotrimethylsilane (Me₃-SiI, 1) (5 mmol, 0.71 mL) in this order. The mixture was allowed to stir at 25 °C for 1 h under N₂. The reaction mixture was diluted with moist hexane (50 mL) to decompose unreacted organozinc compound. Evaporation of the volatiles in vacuo gave a brown oil, which was purified by column chromatography (silica gel, hexane) to give (*E*)-2-phenyl-1-(trimethylsilyl)hex-1-ene (**3c**) (423 mg, 73%) as a colorless oil. An analytical sample was obtained by bulb-to-bulb distillation.

The reaction using $(Me_3SiCH_2)_2Zn$ was carried out in a similar way.

(*E*)-2-Phenyl-1,3-bis(trimethylsilyl)-2-phenylprop-1ene (3d): bp 74-80 °C (10 Torr); ¹H NMR (CDCl₃) δ -0.19 (s, 9 H), 0.16 (s, 9 H), 2.18 (s, 2 H), 5.46 (s, 1 H), 7.19-7.35 (m, 5 H); ¹³C NMR (CDCl₃) δ -1.00, 0.40, 26.32, 124.78, 126.45, 127.10, 127.93, 146.16, 156.20; IR (neat) 2964, 2904, 1592, 1572, 1248, 848; MS, *m/z* (rel intensity) 262 (M⁺, 7), 174 (18), 159 (21), 73 (100). Anal. Calcd for C₁₅H₂₆Si₂: C, 68.62; H, 9.98. Found: C, 68.56; H, 10.13.

(*E*)-2-Methyl-1-(trimethylsilyl)oct-1-ene (5a): bp 101– 103 °C (10 Torr); ¹H NMR (CDCl₃) δ 0.09 (s, 9 H), 0.89 (t, J =6.6 Hz, 3 H), 1.23–1.46 (m, 8 H), 1.76 (d, J = 0.7 Hz, 3 H), 2.05 (td, J = 7.8, 1.5 Hz, 2 H), 5.18 (brs, 1 H); ¹³C NMR (CDCl₃) δ 0.11, 14.09, 21.55, 22.63, 27.85, 28.99, 31.79, 42.68, 122.61, 155.71; IR (neat) 2936, 2864, 1622, 1248, 838; MS, *m/z* (rel intensity) 198 (M⁺, 1), 128 (20), 73 (100). Anal. Calcd for C₁₂H₂₆Si: C, 72.64; H, 13.21. Found: C, 72.64; H, 13.39.

(*E*)-2-Ethyl-1-(trimethylsilyl)oct-1-ene (5b): bp 114–116 °C (7 Torr); ¹H NMR (CDCl₃) δ 0.09 (s, 9 H), 0.89 (t, J = 6.6 Hz, 3 H), 1.01 (t, J = 7.6 Hz, 3 H), 1.23–1.48 (m, 8 H), 2.07 (t, J = 7.8 Hz, 2 H), 2.13(q, J = 7.6 Hz, 2 H), 5.15 (s, 1 H); ¹³C NMR (CDCl₃) δ 0.37, 13.79, 14.08, 22.65, 28.12, 28.93, 29.16, 31.82, 38.34, 122.00, 161.74; IR (neat) 2968, 2864, 1616, 1468, 1248, 842; MS, m/z (rel intensity) 212 (M⁺, 0), 142 (15), 73 (100). Anal. Calcd for C₁₃H₂₈Si: C, 73.50; H, 13.28. Found: C, 73.51; H, 13.50.

(*E*)-2-Butyl-1-(trimethylsilyl)oct-1-ene (5c): bp 115–116 °C (7 Torr); ¹H NMR (CDCl₃) δ 0.09 (s, 9 H), 0.89 (t, J = 6.8 Hz, 3 H), 0.92 (t, J = 7.1 Hz, 3 H), 1.22–1.44 (m, 12 H), 2.02–2.14 (m, 4 H), 5.15 (t, J = 1.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ 0.46, 14.11, 22.65, 23.08, 28.15, 29.14, 31.48 31.82, 35.94, 38.94, 122.46, 160.44; IR (neat) 2960, 2864, 1616, 1246, 842; MS, m/z (rel intensity) 240 (M⁺, 5), 128 (31), 73 (100); HRMS calcd for C₁₅H₃₂Si 240.2273, found 240.2289.

(*E*)-1-(Trimethylsilyl)-2-[(trimethylsilyl)methyl)]oct-1ene (5d): bp 108–114 °C (9 Torr); ¹H NMR (CDCl₃) δ 0.05 (s, 9 H), 0.08 (s, 9 H), 0.89 (t, J = 6.6 Hz, 3 H), 1.27–1.44 (m, 8 H), 1.73 (s, 2 H), 1.99 (dt, J = 0.8, 7.8 Hz, 2 H), 4.99 (s, 1 H); ¹³C NMR (CDCl₃) δ –0.59, 0.56, 14.09, 22.65, 27.16, 28.09, 29.05, 31.80, 41.75, 119.05, 157.89; IR (neat) 2964, 2864, 1604, 1248, 1152, 846; MS, m/z (rel intensity) 270 (M⁺, 3), 125 (13), 112 (11), 73 (100). Anal. Calcd for C₁₅H₃₄Si₂: C, 66.58; H, 12.66. Found: C, 66.40; H, 12.82.

(*E*)-2-(4-Chlorophenyl)-1-(trimethylsilyl)but-1-ene (7b): bp 125–128 °C (5 Torr); ¹H NMR (CDCl₃) δ 0.20 (s, 9 H), 0.97 (t, *J* = 7.6 Hz, 3 H), 2.61 (q, *J* = 7.6 Hz, 2 H), 5.73 (s, 1 H), 7.29–7.35 (m, 4 H); ¹³C NMR (CDCl₃) δ 0.16, 13.97, 27.78, 127.56, 127.99, 128.23, 132.91, 141.74, 157.72; IR (neat) 2968, 1598, 1564, 1494, 1248, 1096, 1012, 924, 862, 838; MS, *m*/z (rel intensity) 240 (M⁺ for ³⁷Cl, 3), 225 (18), 223 (49), 171 (36), 170 (14), 169 (100), 73 (34). Anal. Calcd for C₁₃H₁₉ClSi: C, 65.38; H, 8.02; Cl, 14.84. Found: C, 65.57; H, 8.14; Cl, 14.75.

(*E*)-2-(4-Methoxyphenyl)-1-(trimethylsilyl)but-1-ene (9b-*E*): bp 121–125 °C (3 Torr); ¹H NMR (CDCl₃) δ 0.18 (s, 9 H), 0.99 (t, J = 7.6 Hz, 3 H), 2.61 (q, J = 7.6 Hz, 2 H), 3.81 (s, 3 H), 5.68 (s, 1 H), 6.83–6.86, 7.23–7.37 (m, 4 H); ¹³C NMR (CDCl₃) δ 0.27, 14.18, 27.80, 55.23, 113.46, 125.25, 127.29, 135.58, 158.26, 158.95; IR (neat) 2964, 1612, 1576, 1286, 1246, 1178, 1038, 862, 836; MS, m/z (rel intensity) 235 (M⁺, 3), 234 (15), 219 (27), 166 (14), 165 (100), 73 (30). Anal. Calcd for C₁₄H₂₂OSi: C, 71.73; H, 9.46. Found: C, 71.63; H, 9.53.

 $^{(24)\,}A$ recent review on $R_2Zn,$ see: Knochel, P.; Singer, R. Chem. Rev. $1993,\,93,\,2117.$

 ⁽²⁵⁾ Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
 (26) Wang, R.-T.; Chou, F.-L.; Lou, F.-T. J. Org. Chem. 1990, 55,

⁽²⁶⁾ Wang, R.-I.; Chou, F.-L.; Lou, F.-I. J. Org. Chem. 1990, 55, 4846.

⁽²⁷⁾ Takahakshi, S.; Kuroyama, Y.; Hagihara, N. Synthesis 1980, 627.

⁽²⁸⁾ Ishikawa, M.; Kumada, M.; Sakurai, H. J. Organomet. Chem. 1970, 23, 63.

 ⁽²⁹⁾ Hassler, K.; Bauer, G. Spectrochim. Acta Part A 1987, 43, 1325.
 (30) Chou, S.-S. P.; Kuo, H.-L. K.; Wang, C.-J.; Tsai, C.-Y.; Sun, C.-M. J. Org. Chem. 1989, 54, 868.

(Z)-2-(4-Methoxyphenyl)-1-(trimethylsilyl)but-1-ene (9b-Z): ¹H NMR (CDCl₃) δ -0.17 (s, 9 H), 1.00 (t, J = 7.6 Hz, 3 H), 2.39 (qd, J = 7.6, 1.3 Hz, 2 H), 3.81 (s, 3 H), 5.51 (s, 1 H), 6.82-6.85 (m, 2 H), 7.05-7.08 (m, 2 H); ¹³C NMR (CDCl₃) δ 0.17, 12.69, 35.30, 55.20, 113.05, 124.98, 128.98, 136.81, 158.58, 160.89; MS, m/z (rel intensity) 235 (M⁺, 3), 234 (17), 219 (30), 166 (15), 165 (100), 73 (34).

(*E*)-2-(3-Methoxyphenyl)-1-(trimethylsilyl)but-1-ene (11b): bp 130-135 °C (3 Torr); ¹H NMR (CDCl₃) δ 0.19 (s, 9 H), 0.98 (t, J = 7.6 Hz, 3 H), 2.61 (q, J = 7.6 Hz, 2 H), 3.83 (s, 3 H), 5.73 (s, 1 H), 6.78-6.82 (m, 1 H), 6.93-7.04 (m, 2 H), 7.19-7.26 (m, 1 H); ¹³C NMR (CDCl₃) δ 0.20, 14.09, 27.95, 55.23, 112.19, 112.39, 118.79, 127.03, 129.03, 145.00, 158.89, 159.48; IR (neat) 2964, 1602, 1578, 1490, 1286, 1248, 848; MS, m/z (rel intensity) 235 (M⁺, 3), 234 (15), 220 (19), 219 (27), 203 (17), 166 (13), 165 (93), 135 (12), 102 (12), 73 (34). Anal. Calcd for C₁₄H₂₂OSi: C, 71.73; H, 9.46. Found: C, 71.71; H, 9.49.

(E)-4-(2-Bromophenyl)-2-ethyl-1-(trimethylsilyl)but-1ene (13b): bp 140–143 °C (2 Torr); ¹H NMR (CDCl₃) δ 0.11 (s, 9 H), 1.06 (t, J = 7.6 Hz, 3 H), 2.20 (q, J = 7.6 Hz, 2 H), 2.33–2.39 (m, 2 H), 2.82–2.88 (m, 2 H), 5.22 (brs, 1 H), 7.02– 7.08 (m, 1 H), 7.21–7.23 (m, 2 H), 7.51–7.54 (m, 1 H); ¹³C NMR (CDCl₃) δ 0.34, 13.82, 29.11, 35.38, 38.33, 123.22, 124.38, 127.32, 127.47, 130.45, 132.73, 141.59, 160.14; IR (neat) 3068, 2964, 1616, 1572, 1472, 1444, 1246, 1046, 838; MS, m/z (rel intensity) 312 (M⁺ for ⁸¹Br, 0), 298 (4), 297 (18), 295 (18), 190 (10), 157 (36), 139 (36), 137 (35), 129 (41), 73 (100). Anal. Calcd for C₁₅H₂₃BrSi: C, 57.87; H, 7.45; Br, 25.66. Found: C, 57.87; H, 7.60; Br, 25.61.

(*E*)-6-(*tert*-Butyldimethylsiloxy)-2-ethyl-1-(trimethylsilyl)hex-1-ene (15b): bp 132-134 °C (3 Torr); ¹H NMR (CDCl₃) δ 0.05 (s, 6 H), 0.09 (s, 9 H), 0.89 (s, 9 H), 1.00 (t, J =7.6 Hz, 3 H), 1.43-1.57 (m, 4 H), 2.11 (t, J = 7.6Hz, 2 H), 2.14 (t, J = 7.6 Hz, 2 H), 3.62 (t, J = 6.4 Hz, 2 H), 5.15 (s, 1 H); ¹³C NMR (CDCl₃) δ -5.25, 0.36, 13.76, 18.37, 24.21, 25.98, 28.84, 32.58, 37.93, 63.20 122.32, 161.30; IR (neat) 2960, 2864, 1616, 1248, 840; MS, m/z (rel intensity) 314 (M⁺, 0), 148 (16), 147 (100), 133 (19), 75 (13), 73 (45). Anal. Calcd for C₁₇H₃₈OSi₂: C, 64.89; H, 12.17. Found: C, 64.79; H, 12.39.

(*E*)-6-Chloro-2-ethyl-1-(trimethylsilyl)pent-1-ene (17b): bp 96-97 °C (7 Torr); ¹H NMR (CDCl₃) δ 0.10 (s, 9 H), 1.02 (t, J = 7.6 Hz, 3 H), 1.85-1.96 (m, 2 H), 2.10-2.24 (m, 4 H), 3.58 (t, J = 6.6 Hz, 2 H), 5.18 (t, J = 1.2 Hz, 1 H); ¹³C NMR (CDCl₃) δ 0.28, 13.70, 28.93, 31.04, 35.16, 44.71, 123.51, 159.30; IR (neat) 2964, 1616, 1248, 842; MS, m/z (rel intensity) 204 (M⁺ for ³⁵Cl, 1), 95 (47), 93 (100), 73 (38). Anal. Calcd for C₁₀H₂₁ClSi: C, 58.64; H, 10.33; Cl, 17.31. Found: C, 58.67; H, 10.51; Cl, 17.33.

(*E*)-6-Chloro-1-(trimethylsilyl)-2-[(trimethylsilyl)methyl]hex-1-ene (17d): bp 108-117 °C (10 Torr); ¹H NMR (CDCl₃) δ 0.06 (s, 9 H), 0.08 (s, 9 H), 1.73 (s, 2 H), 1.86-1.96 (m, 2 H), 2.12-2.18 (m, 2 H), 3.52 (t, J = 6.8 Hz, 2 H), 5.01 (s, 1 H); ¹³C NMR (CDCl₃) δ -0.62, 0.46, 27.22, 30.99, 38.50, 44.70, 120.40, 155.54; IR (neat) 2960, 2904, 1606, 1248, 1156, 860, 766; MS, m/z (rel intensity) 262 (M⁺ for ³⁵Cl, 2), 93 (15), 73 (100). Anal. Calcd for C₁₂H₂₇ClSi₂: C, 54.81; H, 10.35; Cl, 13.48. Found: C, 54.71; H, 10.58; Cl, 13.44.

(*E*)-2-Cyclohexyl-1-(trimethylsilyl)but-1-ene (19b): bp 128–132 °C (10 Torr); ¹H NMR (CDCl₃) δ 0.09 (s, 9 H), 1.00 (t, J = 7.6 Hz, 3 H), 1.11–1.30 (m, 5 H), 1.70–1.88 (m, 6 H), 2.15 (q, J = 7.6 Hz, 2 H), 5.14 (s, 1 H); ¹³C NMR (CDCl₃) δ 0.48, 14.44, 26.45, 26.99, 28.78, 33.22, 45.33, 119.20, 167.03; IR (neat) 2936, 2860, 1614, 1454, 1248, 898, 844; MS, m/z (rel intensity) 210 (M⁺, 5), 195 (11), 139 (13), 136 (21), 73 (100). Anal. Calcd for C₁₃H₂₆Si: C, 74.20; H, 12.45. Found: C, 74.17; H, 12.57.

2-Cyclohexyl-1,3-bis(trimethylsilyl)prop-1-ene (19d): bp 105–116 °C (10 Torr); ¹H NMR (CDCl₃) δ [0.01 (Z), 0.04 (E), s, 9 H, SiCH₃], [0.066 (E), 0.07 (Z), s, 9 H], 1.07–1.74 (m, 11 H), [1.54 (Z), 1.77 (E), s, 2 H], [4.92 (Z), 4.96 (E), s, 1 H]; ¹³C NMR (CDCl₃) δ [-0.49 (E), -0.42 (Z)], [0.60 (Z), 0.65 (E)], 23.75, 26.06, 26.33, 26.44, 27.05, 27.68, 32.96, 47.45, [115.52 (E), 120.99 (Z)], 163.16; IR (neat) 2936, 2860, 1602, 1246, 848; MS, *m/z* (rel intensity) 269 (M⁺, 3), 165 (17), 73 (100). Anal. Calcd for C₁₅H₃₂Si₂: C, 67.08; H, 12.01. Found: C, 67.04; H, 12.27. (*E*)-2-Ethyl-4-phenyl-1-(trimethylsilyl)but-1,3-diene (21b): bp 132–139 °C (6.5 Torr); ¹H NMR (CDCl₃) δ 0.17 (s, 9 H), 1.15 (t, J = 7.6 Hz, 3 H), 2.46 (q, J = 7.6 Hz, 2 H), 5.65 (s, 1H), 6.57 (d, J = 16.4 Hz, 1 H), 6.72 (d, J = 16.5 Hz, 1 H), 7.19–7.44 (m, 5 H); ¹³C NMR (CDCl₃) δ 0.17, 14.87, 25.14, 126.48, 127.36, 127.78, 128.59, 132.25, 133.55, 137.52, 177.82; IR (neat) 2964, 1602, 1580, 1248, 962, 868; MS, *m/z* (rel intensity) 230 (M⁺, 11), 156 (10), 143 (11), 129 (10), 73 (100). Anal. Calcd for C₁₅H₂₂Si: C, 78.20; H, 9.62. Found: C, 78.06; H, 9.73.

(1*E*,6*E*)-2-Ethyl-7-phenyl-1-(trimethylsilyl)hepta-1,6diene (23b): ¹H NMR (CDCl₃) δ 0.10 (s, 9 H), 1.01 (t, *J* = 7.6 Hz, 3 H), 1.60 (quint, *J* = 7.8 Hz, 2 H), 2.15 (q, *J* = 7.6 Hz, 2 H), 2.10-2.25 (m, 4 H), 5.18 (s, 1 H), 6.23 (dt, *J* = 15.9, 6.8 Hz, 1 H), 6.39 (d, *J* = 15.9 Hz, 1 H), 7.16-7.36 (m, 5 H); ¹³C NMR (CDCl₃) δ 0.37, 13.80, 27.74, 28.91, 32.75, 37.72, 122.55, 125.90, 126.78, 128.46, 129.98, 130.86, 137.86, 161.06; IR (neat) 2964, 1616, 1248, 964, 842; MS, *m/z* (rel intensity) 272 (M⁺, 0), 130 (59), 129 (11), 109 (33), 91 (13), 73 (26). Anal. Calcd for C₁₈H₂₈Si: C, 79.34; H, 10.36. Found: C, 79.08; H, 10.55.

(*E*)-1,2-Bis(trimethylsilyl)but-1-ene (25b): bp 108-112 °C; ¹H NMR (CDCl₃) δ 0.09 (s, 9 H), 0.13 (s, 9 H), 0.99 (t, J =7.6 Hz, 3 H), 2.30 (q, J = 7.6 Hz, 2 H), 5.97 (s, 1 H); ¹³C NMR (CDCl₃) δ -0.81, 0.54, 15.61, 29.36, 140.72, 167.12; IR (neat) 2964, 1566, 1248, 928, 846; MS, *m/z* (rel intensity) 200 (M⁺, 6), 185 (11), 112 (21), 111 (37), 97 (12), 73 (100). HRMS calcd for C₁₀H₂₄Si₂ 200.1417, found 200.1420.

(*E*)-2-Phenyl-1-[(trimethylsilyl)dimethylsilyl]prop-1ene (26a): bp 136–139 °C (3.5 Torr); ¹H NMR (CDCl₃) δ 0.14 (s, 9 H), 0.28 (s, 6 H), 2.22 (s, 3 H), 5.98 (s, 1 H), 7.24–7.40 (m, 3 H), 7.47–7.51 (m, 2 H); ¹³C NMR (CDCl₃) δ –2.64, –1.78, 21.61, 125.41, 126.46, 127.19, 128.10, 144.17 151.31; IR (neat) 2960, 1600, 1576, 1446, 1246, 836, 802, 768; MS, *m/z* (rel intensity) 248 (M⁺, 10), 175 (51), 159 (38), 135 (100), 73 (53). Anal. Calcd for C₁₄H₂₄Si₂: C, 67.66; H, 9.73. Found: C, 67.56; H, 9.82.

(*E*)-2-Phenyl-1-[(trimethylsilyl)dimethylsilyl]but-1ene (26b): bp 153–155 °C (14 Torr); ¹H NMR (CDCl₃) δ 0.11 (s, 9 H), 0.24 (s, 6 H), 0.98 (t, J = 7.5 Hz, 3 H), 2.60 (q, J = 7.4Hz, 2 H), 5.74 (s, 1 H), 7.21–7.41 (m, 5 H); ¹³C NMR (CDCl₃) δ –2.47, –1.88, 14.17, 28.50, 126.20, 126.35, 127.06, 128.13, 143.36, 158.73; IR (neat) 2960, 1598, 1574, 1246, 838, 800; MS, m/z (rel intensity) 262 (M⁺, 12), 189 (89), 173 (43), 145 (21), 135 (100), 73 (87). Anal. Calcd for C₁₅H₂₆Si₂: C, 68.62; H, 9.98. Found: C, 68.48; H, 10.03.

(*E*)-2-Phenyl-1,3-bis[(trimethylsilyl)dimethylsilyl]prop-1-ene (26d): bp 147–153 °C (0.5 Torr); ¹H NMR (CDCl₃) δ -0.17 (s, 9 H), 0.11 (s, 9 H), 0.23 (s, 6 H), 2.16 (s, 2 H), 5.48 (s, 1 H), 7.22–7.35 (m, 5 H); ¹³C NMR (CDCl₃) δ –2.15, –1.72, -0.99, 27.05, 123.60, 126.42, 127.00, 127.90, 146.13, 156.13; IR (neat) 2960, 1590, 1246, 836, 804, 764; MS, *m/z* (rel intensity) 320 (M⁺, 7), 247 (23), 159 (26), 135 (24), 131 (13), 73 (100). Anal. Calcd for C₁₇H₃₂Si₃: C, 63.67; H, 10.06. Found: C, 63.61; H, 9.88.

(*E*)-2-Phenyl-1-[[(trimethylsilyl)dimethylsilyl]dimethylsilyl]but-1-ene (27b): bp 166–167 °C (3 Torr); ¹H NMR (CDCl₃) δ 0.10 (s, 9 H), 0.14 (s, 6 H), 0.28 (s, 6 H), 0.98 (t, *J* = 7.6 Hz, 3 H), 2.61 (q, *J* = 7.6 Hz, 2 H), 5.75 (s, 1 H), 7.24–7.40 (m, 5 H); ¹³C NMR (CDCl₃) δ –6.38, -1.47, -1.39, 14.2, 28.5, 126.2, 126.8, 127.0, 128.1, 143.4, 158.6; IR (neat) 2956, 1598, 1574, 1246, 836; MS, *m/z* (rel intensity) 320 (M⁺, 6), 231 (11), 189 (40), 173 (74), 145 (19), 135 (55), 116 (17), 73 (100); HRMS calcd for C₁₇H₃₂Si₃ 320.1813, found 320.1811.

Acknowledgment. This work is partially supported by grants from the Ministry of Education, Science, and Culture, Japan. N.C. thanks CIBA-GEIGY Foundation (Japan) for the Promotion of Science for generous financial support.

JO941775R